Machine Language

Machine Language 1s the language written as strings of binary 1's and 0's. It 1s the
only language which a computer understands without using a translation program.

A machine language instruction has two parts. The first part is the operation code
which tells the computer what function to perform and the second part 1s the
operand which tells the computer where to find or store the data which 1s to be
manipulated. A programmer needs to write numeric codes for the instruction and
storage location of data.

Disadvantages —

e [tis machine dependant 1.e. 1t differs from computer to computer.
e [t 1s difficult to program and write

e [t is prone to errors

e [t s difficult to modify

Assembly Language

It 1s a low level programming language that allows a user to write a program
using alphanumeric mnemonic codes, instead of numeric codes for a set of
instructions.It requires a translator known as assembler to convert assembly
language into machine language so that it can be understood by the computer. It 1s
easier to remember and write than machine language.

Assembler — It 1s a computer program which converts or translates assembly
language into machine language. It assembles the machine language program in
the main memory of the computer and makes 1t ready for execution.

Advantages —

e [t s easy to understand and use
e [t is easy to locate and correct errors
e [t s easier to modify

Disadvantages —

e [t 1s machine dependant

Page 1 of 12

Scanned by CamScanner

High level Language

It 1s a machine independent language. It enables a user to write programs in a
language which resembles English words and familiar mathematical symbols.
COBOL was the first high level language developed for business.

Each statement in a high level language 1s a micro instruction which is translated
into several machine language instructions.

A compiler 1s a translator program which translates a high level programming
language into equivalent machine language programs. It compiles a set of machine
language instructions for every high level language program.

Source code: It 1s the input or the programming instructor of a procedural
language.

The compiler translates the source code into machine level language which is
known as object code. Object code can be saved and executed as and when desired
by the user.

Linker: A program used with a compiler to provide links to the libraries needed
for an executable program. It takes one or more object code generated by a
compiler and combines them into a single executable program.

Interpreter: It is a translator used for translating high level language into the
desired output. It takes one statement, translates i1t into machine language
instructions and then immediately executes the result. Its output is the result of
program execution.

Advantages of High level Language —

e [t is machine independent
e [t 1s easier to learn and use
e [t is easier to maintain and gives few errors

Disadvantages —

e [t lowers efficiency
e Jtisless flexible

Page 2 of 12

Scanned by CamScanner

MNEMONIC: English word MNEMONIC means "A device such as a pattern
of letters, ideas, or associations that assists in remembering something.".
So, its usually used by assembly language programmers to remember the
"OPERATIONS" a machine can do, like "ADD" and "MUL" and "MOV" etc.
This is assembler specific.

INSTRUCTION FORMAT

An instruction (instruction format) is a command to the microprocessor to
perform a given task on a particular data. Each instruction (instruction format) is
of two parts. One is task to be performed, called the operation code
or opcode and the second one is the data to be operated on, called the operand.
The operands or data can be specified in different ways. It may include an 8-bit or
16-bit data, an internal register. a memory location, or 8-bit or 16-bit address. In
some instructions, the operand is implicit.

Instruction Word Size

The 8085 instruction set is of three groups according to word size:

e One-word or one-byte instructions.
e Two-word or two-byte instructions.
e Three-word or three-byte instructions.

[
In the 8085 microprocessor, byte and words are synonymous because it is an 8-bit
microprocessor. But, instructions are commonly referred to in terms of bytes
rather than words.

One-byte instructions

A one-byte instruction includes a opcode and a operand in the same byte.
Operand(s) are internal registers and are in the instruction in form of codes. If
there is no numeral present in the instruction then that instruction will be of one-
byte, for example, MOV C, A, RAL, and ADD B, etc. Table M.1 shows examples of

one-byte instruction.

Page 3 of 12

Scanned by CamScanner

Task Opcode | Operand

Copy the content of accumulator in

. MOV C A
the register C.
Add the contents of register B to
ADD B
the contents of the accumulator.
Invert each bit in the accumulator. CMA None

These instructions are of one-byte performing three different tasks. In the first
instruction, operand and registers are specified. In the second instruction, the
operand B is specific and the accumulator is not there. Similarly, in the third
instruction, the accumulator is assume to be the implicit operand. These
instructions are in 8-bit binary format in the memory and each requires one
memory location.

Two-byte instructions

In a two-byte instruction, the first byte specifies the operation code and second
byte specifies the operand. Source operand is a data byte and immediately
following the opcode. If an 8-bit numeral is present in the instruction then that
instruction will be of two-byte. Here, the numeral may be a data or an address.
For example, in MVI A, 35H and IN 29H, etc. In a two-byte instruction, the first
byte will be the opcode and the second byte will be for the numeral present in
the instruction.

Task Opcode Operand

Load an 8-bit data byte
in the accumulator.

MVI A 35H

Page 4 of 12

Scanned by CamScanner

Three-byte instructions

In a three-byte instruction, the first byte specifies the opcode, and the following
two bytes specify the 16-bit operand. The second byte is the low-order operand
and the third byte is the high-order operand. If a 16-bit numeral is present in the
instruction then that instruction will be of three-byte. Here, the numeral may be a
data or an address, for example, in LXI H,3500H and STA 2500H, etc.

Task Opcode
Transfer the program

JMP
sequence to the memory
location 2085h

Addressing modes in 8085 microprocessor

The way of specifying data to be operated by an instruction is called
addressing mode.

Types of addressing modes -
In 8085 microprocessor there are 5 types of addressing modes:
1. Immediate Addressing Mode -

In immediate addressing mode the source operand is always data. If
the data is 8-bit, then the instruction will be of 2 bytes, if the data is of
16-bit then the instruction will be of 3 bytes.

Examples:

MVI B 45 (move the data 45H immediately to register B)

LXI H 3050 (load the H-L pair with the operand 3050H immediately)

JMP address (jump to the operand address immediately)

2. Register Addressing Mode -
In register addressing mode, the data to be operated is available
inside the register(s) and register(s) is(are) operands. Therefore the
operation is performed within various registers of the microprocessor.
Examples:
MOV A, B (move the contents of register B to register A)
ADD B (add contents of registers A and B and store the result in

Page 5 of 12

Scanned by CamScanner

register A)
INR A (increment the contents of register A by one)

3. Direct Addressing Mode -
In direct addressing mode, the data to be operated is available inside
a memory location and that memory location is directly specified as an
operand. The operand is directly available in the instruction itself.
Examples:
LDA 2050 (load the contents of memory location into accumulator A)
LHLD address (load contents of 16-bit memory location into H-L
register pair)
IN 35 (read the data from port whose address is 01)

4. Register Indirect Addressing Mode -
In register indirect addressing mode, the data to be operated is
available inside a memory location and that memory location is
indirectly specified by a register pair.
Examples:
MOV A, M (move the contents of the memory location pointed by the
H-L pair to the accumulator)
LDAX B (move contains of B-C register to the accumulator)
LXIH 9570 (load immediate the H-L pair with the address of the
location 9570)

5. Implied/Implicit Addressing Mode -
In implied/implicit addressing mode the operand is hidden and the
data to be operated is available in the instruction itself.
Examples:
CMA (finds and stores the 1’s complement of the contains of
accumultor Ain A)
RRC (rotate accumulator A right by one bit)
RLC (rotate accumulator A left by one bit)

Instruction Set of Intel 8085 Microprocessor

An Instruction is a command given to the computer to perform a specified
operation on given data. The instruction set of a microprocessor is the collection

Page 6 of 12

Scanned by CamScanner

of the instructions that the microprocessor is designed to execute. The
instructions described here are of Intel 8085. These instructions are of Intel
Corporation. They cannot be used by other microprocessor manufactures. The
programmer can write a program in assembly language using these instructions.
These instructions have been classified into the following groups:

Data Transfer Group

Arithmetic Group

Logical Group

Branch Control Group

I/0 and Machine Control Group

Al ol ol ol e

Data Transfer Group

Instructions, which are used to transfer data from one register to another
register, from memory to register or register to memory, come under this group.

Examples are: MOV, MVI, LXI, LDA, STA etc. When an instruction of data transfer
group is executed, data is transferred from the source to the destination without
altering the contents of the source.

For example, when MOV A, B is executed the content of the register B is copied
into the register A, and the content of register B remains unaltered. Similarly,
when LDA 2500 is executed the content of the memory location 2500 is loaded
into the accumulator. But the content of the memory location 2500 remains
unaltered.

1. MOV rl, r2 (Move Data; Move the content of the one register to
another). [r1] <-- [r2]

MOV r, m (Move the content of memory register). r <-- [M]
MOV M, r. (Move the content of register to memory). M <-- [r]
MVI r, data. (Move immediate data to register). [r] <-- data.

MVI M, data. (Move immediate data to memory). M <-- data.
LXI rp, data 16. (Load register pair immediate). [rp] <-- data 16 bits,
[rh] <-- 8 LSBs of data.

7. LDA addr. (Load Accumulator direct). [A] <-- [addr].

8. STA addr. (Store accumulator direct). [addr] <-- [A].

9. LHLD addr. (Load H-L pair direct). [L] <-- [addr], [H] <-- [addr+1].
10.SHLD addr. (Store H-L pair direct) [addr] <-- [L], [addr+1] <-- [H].
11.LDAX rp. (LOAD accumulator indirect) [A] <-- [[rp]]

12.STAX rp. (Store accumulator indirect) [[rp]] <-- [A].

Oh B0 @ W9 B

Page 7 of 12

Scanned by CamScanner

13.XCHG. (Exchange the contents of H-L with D-E pair) [H-L] <--> [D-E].

Arithmetic Group

The instructions of this group perform arithmetic operations such as addition,
subtraction; increment or decrement of the content of a register or memory.
Examples are: ADD, SUB, INR, DAD etc.

1. Arithmetic Group
1. ADD r. (Add register to accumulator) [A] <-- [A] + [r].
2. ADD M. (Add memory to accumulator) [A] <-- [A] + [[H-L]].
3. ADCr. (Add register with carry to accumulator). [A] <-- [A] + [r] + [CS].
4. ADC M. (Add memory with carry to accumulator) [A] <-- [A] + [[H-L]]
[CS].
ADI data (Add immediate data to accumulator) [A] <-- [A] + data.
6. ACI data (Add with carry immediate data to accumulator). [A] <-- [A]
+ data + [CS].
7. DAD rp. (Add register paid to H-L pair). [H-L] <-- [H-L] + [rp].
8. SUB . (Subtract register from accumulator). [A] <-- [A] = [r].
9. SUB M. (Subtract memory from accumulator). [A] <-- [A] — [[H-L]].
10.SBB r. (Subtract register from accumulator with borrow). [A] <-- [A] —
[r] - [CS].
11.SBB M. (Subtract memory from accumulator with borrow). [A] <-- [A]
— [[H-L]] - [CS].
12.SUl data. (Subtract immediate data from accumulator) [A] <-- [A] —
data.
13.SBI data. (Subtract immediate data from accumulator with borrow).
[A] <-- [A] — data — [CS].
14.INR r (Increment register content) [r] <-- [r] +1.
15.INR M. (Increment memory content) [[H-L]] <-- [[H-L]] + 1.
16.DCR r. (Decrement register content). [r] <-- [r] — 1.
17.DCR M. (Decrement memory content) [[H-L]] <-- [[H-L]] — 1.
18.INX rp. (Increment register pair) [rp] <-- [rp] — 1.
19.DCX rp (Decrement register pair) [rp] <-- [rp] -1.
20.DAA (Decimal adjust accumulator) .

L

Page 8 of 12

Scanned by CamScanner

The instruction DAA is used in the program after ADD, ADI, ACI, ADC,
etc instructions. After the execution of ADD, ADC, etc instructions the
result is in hexadecimal and it is placed in the accumulator. The DAA
instruction operates on this result and gives the final result in the
decimal system. It uses carry and auxiliary carry for decimal
adjustment. 6 is added to 4 LSBs of the content of the accumulator if
their value lies in between A and F or the AC flag is set to 1. Similarly,
6 is also added to 4 MSBs of the content of the accumulator if their
value lies in between A and F or the CS flag is set to 1. All status flags
are affected. When DAA is used data should be in decimal numbers.

Logical Group

P (00 o=l Om L g O B =

The Instructions under this group perform logical operation such as AND,
OR, compare, rotate etc. Examples are: ANA, XRA, ORA, CMP, and RAL etc.

ANA r. (AND register with accumulator) [A] <-- [A] [r].

ANA M. (AND memory with accumulator). [A] <-- [A] A [[H-L]].

ANI data. (AND immediate data with accumulator) [A] <-- [A] » data.
ORA r. (OR register with accumulator) [A] <-- [A] v [r].

ORA M. (OR memory with accumulator) [A] <-- [A] v [[H-L]]

ORI data. (OR immediate data with accumulator) [A] <-- [A] v data.
XRA r. (EXCLUSIVE — OR register with accumulator) [A] <-- [A] v [r]
XRA M. (EXCLUSIVE-OR memory with accumulator) [A] <-- [A] v [[H-L]]
. XRIl data. (EXCLUSIVE-OR immediate data with accumulator) [A] <-- [A]

10 CMA. (Complement the accumulator) [A] <-- [A]

11.CMC. (Complement the carry status) [CS] <-- [CS]

12.STC. (Set carry status) [CS] <-- 1

13.CMP r. (Compare register with accumulator) [A] —[r]

14.CMP M. (Compare memory with accumulator) [A] — [[H-L]]

15.CPI data. (Compare immediate data with accumulator) [A] — data.

The 2nd byte of the instruction is data, and it is subtracted from the
content of the accumulator. The status flags are set according to the result
of subtraction. But the result is discarded. The content of the accumulator
remains unchanged.

Page 9 of 12

Scanned by CamScanner

16.RLC (Rotate accumulator left) [An+1] <-- [An], [AO] <-- [A7],[CS] <-- [A7].

CS A7 A0 _J

Carry Status Accumulator

The content of the accumulator is rotated left by one bit. The seventh bit of
the accumulator is moved to carry bit as well as to the zero bit of the
accumulator. Only CS flag is affected.

17.RRC. (Rotate accumulator right) [A7] <-- [A0], [CS] <-- [AQ], [An] <-- [An+1].

G ‘ lA? A0 |—

+

Carry Status Accumulator

The content of the accumulator is rotated right by one bit. The zero bit of
the accumulator is moved to the seventh bit as well as to carry bit. Only CS
flag is affected.

18.RAL. (Rotate accumulator left through carry) [An+1] <-- [An], [CS] <-- [A7],
[AO] <-- [CS].

19.RAR. (Rotate accumulator right through carry) [An] <-- [An+1], [CS] <-- [AOQ],
[A7] <-- [CS]

Branch Control Group

This group includes the instructions for conditional and unconditional jump,
subroutine call and return, and restart. Examples are: IMP, JC, JZ, CALL, CZ, RST
etc.

1. JMP addr (label). (Unconditional jump: jump to the instruction specified by
the address). [PC] <-- Label.

2. Conditional Jump addr (label): After the execution of the conditional jump
instruction the program jumps to the instruction specified by the address
(label) if the specified condition is fulfilled. The program proceeds further in
the normal sequence if the specified condition is not fulfilled. If the
condition is true and program jumps to the specified label, the execution of
a conditional jump takes 3 machine cycles: 10 states. If condition is not

Page 10 of 12

Scanned by CamScanner

true, only 2 machine cycles; 7 states are required for the execution of the
instruction.
1. JZ addr (label). (Jump if the result is zero)
IJNZ addr (label) (Jump if the result is not zero)
JC addr (label). (Jump if there is a carry)
JNC addr (label). (Jump if there is no carry)
JP addr (label). (Jump if the result is plus)
JM addr (label). (Jump if the result is minus)
JPE addr (label) (Jump if even parity)
8. JPO addr (label) (Jump if odd parity)
3. CALL addr (label) (Unconditional CALL: call the subroutine identified by the
operand)

= U o

CALL instruction is used to call a subroutine. Before the control is
transferred to the subroutine, the address of the next instruction of the
main program is saved in the stack. The content of the stack pointer is
decremented by two to indicate the new stack top. Then the program
jumps to subroutine starting at address specified by the label.

4. RET (Return from subroutine)

5. RST n (Restart) Restart is a one-word CALL instruction. The content of the
program counter is saved in the stack. The program jumps to the
instruction starting at restart location.

/0 and Machine Control Group

This group includes the instructions for input/output ports, stack and machine
control. Examples are: IN, OUT, PUSH, POP, and HLT etc.

» Stack, 1/0 and Machine Control Group

IN port-address. (Input to accumulator from 1/O port) [A] <-- [Port]

OUT port-address (Output from accumulator to I/O port) [Port] <-- [A]
PUSH rp (Push the content of register pair to stack)

PUSH PSW (PUSH Processor Status Word)

POP rp (Pop the content of register pair, which was saved, from the stack)
POP PSW (Pop Processor Status Word)

HLT (Halt)

XTHL (Exchange stack-top with H-L)

ool L L B el

Page 11 of 12

Scanned by CamScanner

9. SPHL (Move the contents of H-L pair to stack pointer)
10.El (Enable Interrupts)

11.DI (Disable Interrupts)
12.SIM (Set Interrupt Masks)
13.RIM (Read Interrupt Masks)
14.NOP (No Operation)

Page 12 of 12

Scanned by CamScanner

